
ISIS2017 The 18th International Symposium on Advanced Intelligent Systems

19

An Improved Design of Program Representation
for Genetic Programming

Feng-Cheng Chang1 and Hsiang-Cheh Huang2

1 Dept. of Innovative Information and Technology, Tamkang University, TAIWAN
135170@mail.tku.edu.tw

2 Dept. of Electrical Engineering, National University of Kaohsiung, TAIWAN
hch.nuk@gmail.com

Abstract. Although genetic programming (GP) is derived from genetic
algorithm (GA), there are issues that prevent GP being as efficient as
GA. The validity of a generated program, the design of ephemeral con-
stants, and the empirical considerations of GP parameters are part of the
issues affecting the convergence of a GP process. Based on many exper-
imental results, an improved GP scheme is proposed in this paper. The
design of the program representation and the storage of the computa-
tion result(s) ensure that a program is both structurally and behaviorally
valid. Empirical considerations are also discussed, and a few guidelines of
setting GP parameters are derived from the experimental observations.

Keywords: Genetic programming · GP

1 Introduction

Genetic algorithm (GA)[7][8] is a kind of Evolutionary computation (EC)[2]. The
process searches for a sub-optimal solution with the affordable resources by ran-
domly exploring the solution space. With a properly defined solution structure
and the fitness function, the mechanism of GA, including the selection strategy,
the crossover operator, and the mutation operator, would evolve the population
to converge to the sub-optimal solution.

Genetic programming (GP)[9][11], which inherits the concepts from GA, is
a method for finding a program. It has been applied to various research fields,
such as [1]. However, its computation complexity is generally much higher than
GA’s. To speed up the GP process, the parallelism and locality properties of
the evolution mechanism can be exploited[4]. The issue of producing invalid
programs is also addressed in the literature[6][10]. By combining the concepts of
Linear GP (LGP)[3] and VLIW, we proposed a program representation scheme
to reduce the probability of producing invalid programs during the evolution[5].

Based on our previous work, an improved design is described in this paper.
The improvements are developed by analyzing the run-time behavior of the pro-
grams in many experiments. In Sec. 2, the GP issues that affects the design are
discussed. In Sec. 3, the guidelines for designing the program representation are



ISIS2017 The 18th International Symposium on Advanced Intelligent Systems

20

derived by analyzing the run-time behavior of programs. In Sec. 4, the exper-
imental results are discussed and the guidelines for setting the GP parameters
are proposed. Finally, we conclude this work and describe the future directions
in Sec. 5.

2 Issues Affecting the Design

Although the concepts of GP were derived from those of GA, the properties are
different in many aspects. Three issues that affects our work are described in this
section. Firstly, the genetic operations (crossover and mutation) in GP are more
likely to produce invalid offspring than those in GA. There are a few researches
that address this issue and try to tackle it. In our previous work, we proposed
a program representation that is fixed-length and consists only operands. Thus,
the genetic operations always produce a structurally valid program.

Another issue is related to the coefficients (literal values or constants) in a
program. Since coefficients are constant values in an expression, they are not ob-
tained from the input values. The solution for this issue is to design a mechanism
that allows a program to embed constants. In a tree-based program representa-
tion, ephemeral constants are designed as the solution. An ephemeral constant is
generated by a predefined random function and inserted into the tree as a leaf.
In our previous design, a similar concept is adopted: the LOAD operator assigns
a random number to the destination register (variable).

The other is the termination condition of a GP process. In GA, the fitness
function defines the high-dimensional solution space. Therefore, the target of the
optimization is the fittest solution to the fitness function. In GP, however, the
target is actually the fittest program behavior that consumes the input values
and produce the output values. The problems are: (1) there are multiple fittest
programs and (2) the training set is much smaller than the problem/solution
space. If the size of the training set is quite small to the size of the problem
space, the over-fitting problem may affect the quality of the searched program.
To prevent the over-fitting effect, regulation should be designed into the fitness
function. Since there is no theoretically exact match, a GP process is usually
terminated by the number of generations. However, it is application-dependent.
If the size of the training set is roughly the size of the problem space, targeting
at the fittest program is a proper design.

3 Improvements of the Design

In this paper, we focus on the first two issues mentioned in the previous section.
In our previous work, a program representation was proposed to address the two
issues. After a few extended experiments, we discovered that the design only
solves the issues in the structural aspect. The issues in the behavioral aspect
are not covered properly. The operand-only program representation removes the
problem of invalid number of operands (caused by the mutation operation) but
it does not remove the problem of invalid value of operands (caused by both



ISIS2017 The 18th International Symposium on Advanced Intelligent Systems

21

derived by analyzing the run-time behavior of programs. In Sec. 4, the exper-
imental results are discussed and the guidelines for setting the GP parameters
are proposed. Finally, we conclude this work and describe the future directions
in Sec. 5.

2 Issues Affecting the Design

Although the concepts of GP were derived from those of GA, the properties are
different in many aspects. Three issues that affects our work are described in this
section. Firstly, the genetic operations (crossover and mutation) in GP are more
likely to produce invalid offspring than those in GA. There are a few researches
that address this issue and try to tackle it. In our previous work, we proposed
a program representation that is fixed-length and consists only operands. Thus,
the genetic operations always produce a structurally valid program.

Another issue is related to the coefficients (literal values or constants) in a
program. Since coefficients are constant values in an expression, they are not ob-
tained from the input values. The solution for this issue is to design a mechanism
that allows a program to embed constants. In a tree-based program representa-
tion, ephemeral constants are designed as the solution. An ephemeral constant is
generated by a predefined random function and inserted into the tree as a leaf.
In our previous design, a similar concept is adopted: the LOAD operator assigns
a random number to the destination register (variable).

The other is the termination condition of a GP process. In GA, the fitness
function defines the high-dimensional solution space. Therefore, the target of the
optimization is the fittest solution to the fitness function. In GP, however, the
target is actually the fittest program behavior that consumes the input values
and produce the output values. The problems are: (1) there are multiple fittest
programs and (2) the training set is much smaller than the problem/solution
space. If the size of the training set is quite small to the size of the problem
space, the over-fitting problem may affect the quality of the searched program.
To prevent the over-fitting effect, regulation should be designed into the fitness
function. Since there is no theoretically exact match, a GP process is usually
terminated by the number of generations. However, it is application-dependent.
If the size of the training set is roughly the size of the problem space, targeting
at the fittest program is a proper design.

3 Improvements of the Design

In this paper, we focus on the first two issues mentioned in the previous section.
In our previous work, a program representation was proposed to address the two
issues. After a few extended experiments, we discovered that the design only
solves the issues in the structural aspect. The issues in the behavioral aspect
are not covered properly. The operand-only program representation removes the
problem of invalid number of operands (caused by the mutation operation) but
it does not remove the problem of invalid value of operands (caused by both

genetic operations). For example, an exception will be raised when the divisor
for a division operator is zero. When the exception occurs, it can be handled
with different approaches:

– terminate the program and mark the fitness to be the lowest value;
– terminate the program, remove the program, and create a valid program to
replace it;

– set the result to infinite (IEEE754 Inf);
– set the result to not-a-number (IEEE754 NaN);
– discard the exception and continue the next computation.

According to the experimental results, the first approach tends to fill the popu-
lation with invalid programs. It makes the population difficult to converge. The
second approach ensures that only valid programs exist in the population. How-
ever, the invalid-program issue occurs so frequently that the GP process spends
a lot of time generating programs. The third and the fourth approach share the
similar problem. Once an Inf or NaN appears, the subsequent operators are likely
to produce Inf or NaN. The result is that the values held in the register file are
dominated by Inf and NaN. Therefore, we found that the fifth approach is more
practical than the others. It ignores the exception and keeps the computation
results not “polluted” by special values (Inf and NaN); and it neither leaves a
lot of invalid programs in the population nor wastes time generating temporary
valid programs. An alternative viewpoint of this approach is to replace the nor-
mal version with the conditional version if the operator requires an operand with
restrictions.

We mentioned that the LOAD operator in our program representation is the
adapted design of the ephemeral constant in the conventional GP. The LOAD
operator requires two operands: the input literal value and the output register.
The representation of the literal value can be implemented as an an IEEE754
64-bit value or an integer value. The former one is straightforward and allows
to optimize the value via the genetic operations. However, the approach makes
it possible to include Inf or NaN in a program, which reduces the behavioral
validity of a program. The latter one, by using an integer, guarantees that each
bit pattern corresponds to a distinct integer value. The drawback is that it may
require a few arithmetic operations to obtain the desired value. A related problem
is to design the size (the number of bits) of an integer literal. Theoretically it
is possible to use any integer size in the program representation. Considering
that the register indexes are also integers, it is better to leave no “holes” in the
bit-level representation. Therefore, the following rules are added to the design
of the program representation:

– the number of registers is the power of 2;
– the size of the literal value is multiple of the size of the register index.

With the rules, the result of a genetic operation is guaranteed to generate a
structurally and behaviorally valid program.

A minor revision to the previous work is how the result register is determined.
Previously, the program execution result is expected to be stored in a specific



ISIS2017 The 18th International Symposium on Advanced Intelligent Systems

22

register (as part of the fitness function definition). Sometimes a program that
never touches the result register may be generated. Although the program is
both structurally and behaviorally valid, it is meaningless in that the program
effectively does nothing in terms of the output. To ensure a program writing
to the result register at least once, the result register is defined as one of the
output registers in the program. By this definition, the output register of a
LOAD operator is allowed but not generally a good choice.

4 Experiments and Discussions

Based on the improved design of the GP program representation, we performed
a few experiments with different configurations. Some of the experiments worked
as expected and the others did not converge to an acceptable level. It indicates
that some empirical factors should be considered for tuning the GP process.
A configuration that produce acceptable results is described in Sec. 4.1. The
empirical considerations are described in Sec. 4.2.

4.1 An Example Configuration

The following GP configuration was used in the experiments and produced the
acceptable results.

– the population size is 400;
– the selection strategy is the best 25% of the population;
– the mutation rate is 0.001;
– the single-point crossover is used;
– the maximum number of generations is 100000.

There are 16 double-precision (IEEE754) floating-point registers for storing tem-
porary computation results and they are indexed from 0 to 15. The program rep-
resentation is designed as follows. A program contains 10 instructions and each
instruction contains a sequence of operators. For the operands of an operator, i ,
j , and k are the register indexes. The value is an unsigned integer in the range
[0, 15].

Operator Operands Description
LOAD value, i regi ← value
ADD i, j, k regk ← regi + regj
MUL i, j, k regk ← regi × regj
NEG i, j regj ← −regi
CDIV i, j, k regk ← regi ÷ regj if regj = 0
MOV i, j regj ← regi

There are two sets of experiments to examine the convergence of the GP
population. The target of the first set is that the computation result depends
only on the input values. At the beginning of the simulations, 100 training item
are generated. Each item contains four random numbers in the range [0.0, 1.0) as



ISIS2017 The 18th International Symposium on Advanced Intelligent Systems

23

register (as part of the fitness function definition). Sometimes a program that
never touches the result register may be generated. Although the program is
both structurally and behaviorally valid, it is meaningless in that the program
effectively does nothing in terms of the output. To ensure a program writing
to the result register at least once, the result register is defined as one of the
output registers in the program. By this definition, the output register of a
LOAD operator is allowed but not generally a good choice.

4 Experiments and Discussions

Based on the improved design of the GP program representation, we performed
a few experiments with different configurations. Some of the experiments worked
as expected and the others did not converge to an acceptable level. It indicates
that some empirical factors should be considered for tuning the GP process.
A configuration that produce acceptable results is described in Sec. 4.1. The
empirical considerations are described in Sec. 4.2.

4.1 An Example Configuration

The following GP configuration was used in the experiments and produced the
acceptable results.

– the population size is 400;
– the selection strategy is the best 25% of the population;
– the mutation rate is 0.001;
– the single-point crossover is used;
– the maximum number of generations is 100000.

There are 16 double-precision (IEEE754) floating-point registers for storing tem-
porary computation results and they are indexed from 0 to 15. The program rep-
resentation is designed as follows. A program contains 10 instructions and each
instruction contains a sequence of operators. For the operands of an operator, i ,
j , and k are the register indexes. The value is an unsigned integer in the range
[0, 15].

Operator Operands Description
LOAD value, i regi ← value
ADD i, j, k regk ← regi + regj
MUL i, j, k regk ← regi × regj
NEG i, j regj ← −regi
CDIV i, j, k regk ← regi ÷ regj if regj = 0
MOV i, j regj ← regi

There are two sets of experiments to examine the convergence of the GP
population. The target of the first set is that the computation result depends
only on the input values. At the beginning of the simulations, 100 training item
are generated. Each item contains four random numbers in the range [0.0, 1.0) as

the input values and the output is the sum of the four numbers. Each time the
program is executed with a training item, the registers are reset to all-zero and
then reg0 to reg3 are initialized to the input values. At the beginning of Sec. 3,
we mentioned that the over-fitting problem is not in the scope of this paper.
Therefore, the target is to find the fittest program to the training set. The result
is expected to be stored in the output register of the MOV operator of the last
instruction. To evaluate the fitness of a program with the training set, the mean
square error (MSE) of the output values to the expected values are computed,
and the inverse of the MSE is returned. The simulation results showed that an
exact match (the sum of the four numbers) could be found between 2500 to 7500
generations.

The target of the second set is that the computation result depends on both
the input values and some coefficients. There are also 100 training items. A
training item contains four random numbers in [0.0, 1, 0) and the expected output
is the average of the numbers. All the other setting are the same as the previous
set of experiments. The simulation results showed that an exact match could not
be found within 100000 generations. The fitness reached the range from 1005.45
(MSE=0.00099) to 1321.46 (MSE=0.00076).

4.2 Empirical Considerations

Although the rules of our GP design reduce the probability of generating im-
proper programs, it simply makes the GP process be executed smoothly. The
convergence of the population relies on some other configuration parameters. By
analyzing the configurations of the poor-result experiments, some observations
are listed below:

– The number of registers (Nregs) is correlated to the number of register
operands (Nopds) in a program. It is likely to produce reasonable results
when Nopds ≥ 5Nregs.

– Although we need large enough program to meet the previous criterion,
excessively large program tends to slow down the convergence.

– GP is quite different from GA in that the bit-pattern similarity is not gen-
erally consistent with the solution similarity. Therefore, the mutation rate
should be high enough to avoid being trapped in a local minimum.

– According to the same reason of the previous point, the size of the population
should be large enough to keep the diversity of the bit patterns.

5 Conclusions

In this paper, based on our previous work, an improved design that ensures
generating structurally and behaviorally valid programs during the GP process
was proposed. A few experiments for verifying the effectiveness of the design
were performed and analyzed. Some observations on setting the GP configuration
parameters were also conducted. The key points of the design are listed below:



ISIS2017 The 18th International Symposium on Advanced Intelligent Systems

24

– A program is a sequence of instructions; an instruction is a sequence of
defined operators; and an instruction is encoded by using the operands.

– The LOAD operator is the adapted mechanism of the traditional ephemeral
constants. The literal value is restricted to an integer.

– A conditional operation is used when one of its operands is restricted.
– The result register index is obtained from an output operand.
– The program size should be large enough. The empirical results show that
the number of operands is more than 5 times of the number of registers.

– The mutation rate and the population size should be large enough.

In this paper, only the arithmetic operators were used in the simulation. We
would like to incorporate logical operators into the experiments in the future.

Acknowledgements

This work was partially supported by the Ministry of Science and Technology,
Taiwan, under Grant MOST 104-2221-E-032-061.

References

1. Al-Sahaf, H., Al-Sahaf, A., Xue, B., Johnston, M., Zhang, M.: Automatically evolv-
ing rotation-invariant texture image descriptors by genetic programming. IEEE
Transactions on Evolutionary Computation 21(1), 83–101 (Feb 2017)

2. Back, T., Emmerich, M., Shir, O.: Evolutionary algorithms for real world applica-
tions [application notes]. Computational Intelligence Magazine, IEEE 3(1), 64–67
(Feb 2008)

3. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer US (2007)
4. Chang, F.C., Huang, H.C.: A refactoring method for cache-efficient swarm intelli-
gence algorithms. Information Sciences 192, 39–49 (Jun 2012)

5. Chang, F.C., Huang, H.C.: A design of genetic programming scheme with VLIW
concepts. In: The Twelfth International Conference on Intelligent Information Hid-
ing and Multimedia Signal Processing. pp. 307–314. Kaohsiung, Taiwan (Nov 2016)

6. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving
problems. Complex Systems 13, 87–129 (2001)

7. Fogel, D.B.: Evolutionary Computation. IEEE Press, New York (1998)
8. Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms. IEEE
Press (2003)

9. Koza, J.R.: Genetic programming - on the programming of computers by means
of natural selection. Complex adaptive systems, MIT Press (1993)

10. Oltean, M., Grosan, C.: A comparison of several linear genetic programming tech-
niques. Complex Systems 14(4), 285–314 (2003)

11. Walker, M.: Introduction to genetic programming. Tech. rep., (Oct 2001)


